“Fusion Bionic” lasers lotus effects

A researcher team from industry and the Fraunhofer Institute for Material and Beam Technology IWS is spinning off a high-tech company called “Fusion Bionic”. The company aims to bring lotus effects and other functional microstructures from nature to technical surfaces such as air wings and implants using globally cutting-edge solutions for laser interference technology. The team received support from Fraunhofer-Gesellschaft’s AHED project, which specializes in technology transfer.

© ronaldbonss.com
Modern light interference technologies in Dresden make it possible: Now lotus effects and other sophisticated structural tricks of nature can be transferred quickly to technical surfaces such as battery components, implants or even airplanes.
© ronaldbonss.com
A researcher team from industry and Fraunhofer IWS is spinning off a high-tech company called “Fusion Bionic”: Dr. Sabri Alamri, Dr. Tim Kunze und Benjamin Krupop (f. l.) are among them.

Modern light interference technologies in Dresden make it possible: By means of “Direct Laser Interference Patterning” (DLIP for short), the founders of Fusion Bionic, a Fraunhofer IWS spin-off, can now quickly transfer lotus effects and other sophisticated structural tricks of nature to technical surfaces such as battery components, implants or even airplanes. These microscopic surface patterns design implants to be more compatible or, with their anti-icing structures, prevent air passengers from having to wait forever for takeoff to the sunny south in winter due to deeply frozen wings. The technology, which has been researched at Fraunhofer IWS and TU Dresden over the past decade, is now ready for the market. Dr. Tim Kunze, who previously headed the Surface Functionalization group at Fraunhofer IWS, has therefore launched Fusion Bionic in April 2021 with a team from science and industry. The company name refers to the fusion of nature-inspired effects into technical product surfaces, i. e. a kind of symbiosis of biology and technology along the lines of bionics. “The Fraunhofer AHEAD program provided us with a great deal of help in this regard. In an entrepreneurial environment with the support of experts from Fraunhofer-Gesellschaft, we sharpened our business model as well as the product and positioned our team well for the start-up,” says Tim Kunze. The Fraunhofer research transfer into practice also aims to provide new jobs and value creation in Dresden and Saxony. The number of employees is expected to grow to around ten by the end of 2022.

 

Learning evolutionary tricks from sharks and butterflies

“We have been researching in this area jointly at Fraunhofer IWS and TU Dresden for ten years,” says Institute Director Prof. Christoph Leyens, looking back on the development path to the spin-off. "Today, Dresden’s scientists are pioneers in this technology and are inspiring more and more researchers in Europe as well as Asia to take a closer in-depth look at interference technology.” Nearly endless possibilities are also predicted by Prof. Andrés Fabián Lasagni, who brought this technology to Dresden and currently heads the Chair of Large-Area Laser Based Surface at Technische Universität Dresden. He explains that laser interference patterning transfers evolutionary advantages developed by reptiles, butterflies, sharks and other animals over millions of years to the technological world in fast motion. “Many insects, for example, have antibacterial surfaces that ensure they don't get sick as quickly,” he says. "We can now create all these effects with laser structuring. The prospects in medical technology, mechanical engineering and many other industries are enormous,” Leyens adds. ”Without the pioneering work of Prof. Andrés Lasagni, we wouldn't be where we are today.”

More information